Automatic Feature Modeling Techniques for Volume Segmentation Applications

نویسندگان

  • Runzhen Huang
  • Hongfeng Yu
  • Kwan-Liu Ma
  • Oliver G. Staadt
چکیده

In many volume segmentation and visualization tasks, the ability to correctly identify the boundary surface of each volumetric feature of interest in the data is desirable. This surface can be used in subsequent quantitative study of the segmented features. In this paper, we present an automatic approach to generate accurate representations of a feature of interest from volume segmentation. Our method first locates a set of points which tightly define the boundary of the volumetric feature. This set of points can then be used to construct a boundary surface mesh. We also describe how to construct an anti-aliased volume representation of the segmented feature from this point set to enable high-quality volume rendering of the feature. These three representations – point set, boundary surface mesh, and anti-aliased volume segment – have a wide variety of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prosody Modeling for Automatic Speech Recognition and Understanding

This paper summarizes statistical modeling approaches for the use of prosody (the rhythm and melody of speech) in automatic recognition and understanding of speech. We outline effective prosodic feature extraction, model architectures, and techniques to combine prosodic with lexical (word-based) information. We then survey a number of applications of the framework, and give results for automati...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007